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XVI. Functions of Posttive and Negative Type, and their Connection with the
Theory of Integral Equations.

By J. MERCER, B.A., Trinity College, Cambridge.

Communicated by Prof. A. R. Forsyra, Se.D., LL.D., F.R.S.
Received December 21, 1908—Read May 13, 1909.

Introduction.

THE present memoir is the outcome of an attempt to obtain the conditions under
which a given symmetric and continuous function « (s,t) is definite, in the sense of
~Hiuserr.* At an early stage, however, it was found that the class of definite
functions was too restricted to allow the determination of necessary and sufficient
conditions in terms of the determinants of §10. The discovery that this could be
done for functions of positive or negative type, and the fact that almost all the
theorems which are true of definite functions are, with slight modification, true of
these, led finally to the abandonment of the original plan in favour of a discussion of
the properties of functions belonging to the wider classes.

The first part of the memoir is devoted to the definition of various terms employed,
and to the re-statement of the consequences which follow from HILBERT'S theorem.

In the second part, keeping the theory of quadratic forms in view, the necessary
and sufficient conditions, already alluded to, are obtained. These conditions are then
applied to obtain certain general properties of functions of positive and negative type.

Part II1. is chiefly devoted to the investigation of a particular class of functions of
positive type. In addition, it includes a theorem which shows that, in general, from
each function of positive type it is possible to deduce an infinite number of others of
that type.

Lastly, in the fourth part, it is proved that when «(s,¢) is of positive or negative
type it may be expanded as a series of products of normal functions, and that this
series converges both absolutely and uniformly.

* ¢ Gott. Nachr,” (1904), Heft T.
VOL. CCIX.—A 456, 18.10.09
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416 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

Parr I.—DzeriNiTiONg AND DEDUCTIONS FROM HILBERTS THEOREM.

§1. Let «(s,t) be a continuous symmetric function of the variables s,¢ which is
defined in the closed square a =s=b, e =¢ =10 ; and let ® be the class of all functions
which are continuous in the closed interval («, b). When the function 6 ranges
through the class ©, there are three possible ways in which the double integral

(o b
[T (1) 0.5) 0.0) dsr
may behave —
(i) There may be two members of ®, say 6, and 6,, such that

~

| e 6. 6.0 dsan, | 1 e ts,0) 8,09 04 0) s e

have opposite signs ;
(i1) Each function # may be such that

[T w006 omasa=o;
(ii1) Each function # may be such that
[ s 06)00)dsde =0

This suggests a classification of continuous symmetric functions defined in the
closed square. We shall speak of those which have the property (i) as functions of
ambiguous type, whilst the others will be said to be of positive or negative type,
according as they satisfy (ii) or (iii).

§2. From the point of view of integral equations this classification is of considerable
importance. HILBERT has proved® that

n=1 )\n

Jfxenomowasa=s L[ owoma]

where ¥, (s), ¥ (), ..., ¥ (5), ..., are a complete system of normal functions relating to
the characteristic function « (s, ¢) of the integral equation
b
F5) = ()= (s ) ¢ 1)
and A\, As, ..., Ay ..., Tespectively, are the corresponding singular values. It follows
at once from this that, when the singular values are all positive, « (s, t) is of positive

* ¢Gott. Nachr.” (1904), pp. 69-70. See also Scumipt, ‘Math. Ann.,” Band 63, pp. 452, 453. We
shall refer to the result given above as HILBERT'S theorem. The theorem stated by HILBERT on p. 70 of
the paper referred to tan be deduced by writing 6 (s) = «(s)+y (s) in the equation written above.
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 417

type in accordance with the above definition. Conversely, we may prove that, for -
every function of positive type, the above integral equation has only positive singular
values. For, if we multiply along the homogeneous equation

() =M [ k(5,09 (1)

by i, (s), and integrate with respect to s between the limits @ and b, we obtain

M 0w b @ dsde =1

Since the double integral on the left cannot be negative, and \, is a finite number,

it appears that
A, > 0.

Thus the necessary and sufficient condition that o continuous symmetric function
should be of positive type s that the integral equation of the second kind of which ut vs
the characteristic function should have all its singular values positive.™

In a similar manner it may be proved that this statement remains true when we
replace the word positive by negative, in both places where it occurs.®* Moreover,
since a function must be of ambiguous type when it is of neither the positive nor the
negative type, we conclude that the necessary and sufficient condition for a continuous
symmetric function to be of ambiquous type is the existence of both positive and
negative singular values of the integral equation of the second kind of which t 1s the
characteristic_function. _

§3. It is easy to see that, corresponding to a function «(s,t) whose type is
ambiguous, there exists a function # (s) which is not zero in the whole interval (a, b),
and satisfies the relation

jijzx(s,t)a(s)a(t)dsdz;:o. L w

For, if we employ the notation of (i) above, and suppose that % is any real constant,
we shall have

[0 [0 )+ 0,61 [0 () 420, (O] dsde = | [ (5,0)04(5) 61 (1) ds
k[ [ (5,0 16,696,046, (5) 6, (] ds der 2] [ (5,006, (5) 6,(0) s .

¥ It follows from these results that, unless « (s, #) is identically zero, we cannot have
b
j k(5,4) 0(5) 0ty dsdt = 0,
@

for all members of ©. We shall prove this result in a different manner further on (§12), but it is useful to
make the remark at this stage, since it shows conclusively that a function which is not identically zero
cannot be both of positive and negative type.

VOL. CCIX.,—A. 3 H
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418 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

The coefficient of £* on the right has a sign opposite to that of the term independent
of &; accordingly, when we equate the right-hand member to zero, the resulting
quadratic has its roots real. It follows that, if we suppose one of them to be a, the
function

0 (s) = 6, (s)+aby(s)

will satisty (A), and it cannot be identically zero, because this would imply that 6, (s)
is a constant multiple of @, (s), and hence that the two integrals mentioned in (i) have
the same sign.

The converse of this theorem, however, is not true, for there are functions both of
the positive and of the negative type which agree in this property with those of
ambiguous type ; these are known as the semas-definate functions. The remainder are
called definite functions, and have the property that (A) can only be satisfied by a
function 6 (s) which is zero at each point of (a, b).

The two classes of functions we have just mentioned have distinctive properties in
the theory of integral equations. For, if « (s, ) is of positive or negative type, it is
evident from HriBERT'S theorem that (A) can only hold when

b
[ ods=0 (@=172 )
By a known theorem® we must, therefore, have

[k@no@ai=0 (a=s=0)

a

Thus the necessary and sufficient condition that « function of positive or negative
type should be definate is that it should be perfect.

Part II.—TaE NATUrRE oF FuncorioNs oF PosiTivi AND NEreaTive TyPr.

§4. The double integral
b rb
| [k 0@ 0@dsa, . .. ()

in which «(s, t) is an assigned symmetric and continuous function, and 6 is any
member of the class ®, may be regarded as the limit of a certain set of quadratic
expressions. For, let @, a,, ..., @, be points of the interval (o, b), taken in such a
way that the distances between consecutive members of the set of points consisting of
a, b and these n are all equal. Then, by the theory of double integration, and in
virtue of the symmetry of « (s, ), (1) is precisely equal to

(b—a)? Lt [ie(cry, 00,) 02 () + i (g, a) P (03) + . . + K (G, W) 0 (1) + 2 (A, ) 0(0&1)6(0&2) +.. ]

n>® N

* (f. SCHMIDT, op. cit., pp. 451, 452,
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 419

The quantity inside the square brackets is evidently a particular value of a
quadratic form whose coefficients are «(ay, o), « (2, @), K (0, @), 2k (ar, @), ... ;
and, when 6 ranges through the class ©, the numbers 0 (a,), 6 (a), ..., 6 (a,) will
assume all possible real values. v

It is thus suggested that we are to look upon the double integral (1), when franges
through ©, as the limiting case of a quadratic form whose variables assume all possible
real values. The function « (s, t) clearly takes the place of the coefficients of the
form. Moreover, when « (s, t) is of positive type, the double integral (1) corresponds
to a quadratic form which cannot take negative values for real values of the variable ;
and similarly in regard to the case when « (s, ¢) is of negative type.

Now the question, whether a quadratic form does, or does not, take both signs, as
the variables assume all real values, has been shown to depend on the signs of certain
determinants whose elements are coefficients of the form.* The considerations we
have just indicated seem, therefore, to point to the existence of properties of the
function « (s, t) which will decide its type, without directly considering the integral
(1). It is the object of the present section to show that this is actually the case.

§5. Let us, for the present, confine our attention to a function « (s, ¢) of positive
type, so that

.EJZK(S’ t)6(s)0(t)dsde=0,

for all functions ¢ belonging to ©.

We shall, in the first place, define a particular class of the functions ®. Let s, be
any point of the open interval (@, b), and suppose that e and 5 are any two positive
numbers which are so small that the points s,+ (n+e€) also belong to the interval.
Then the continuous function which is zero for o =s=s—n—c and s;+n+e=s5=b,
which is equal to unity for s,—n =s=s,+7, and which is a linear function of s in the
intervals (s;—n—¢, $;—7), (s:+7, si+7+e¢), will be denoted by 6, ,(s; s,). The values
of the function in these latter intervals will be given by

s—(si—m—¢) ($;+n+e)—s
€ ’ €

respectively, and will evidently be positive numbers less than unity at interior points.
Consider now the values of the function

0.,(s;8)0.,(t;s)

at the various points of the square o =s _<_‘b; a=t=Db ot the (s, ¢) plane. In the
accompanying figure this large square, which we shall denote by Q, is intersected by

* See, for example, BroMWicH, ¢Quadratic Forms and their Classification by means of Invariant
Factors’ (1907), chap. ii., where necessary conditions are obtained. It is not difficult to obtain conditions
which are both necessary and suficient.

3 H 2
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420 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

two sets of four lines drawn parallel to the axes of s and ¢; these are the lines
t=stm, t=s1(n+e); s=s1n, s=s1(n+e) respectively, and they may be
identified by observing that the number at the point where any one of them
intersects an axis is the value of the corresponding variable which is constant along
it. It will thus be seen that the square denoted by ¢, is bounded by the four lines

%
]
e
d'll
T N
R ? ’///////7§
/ /
x /
L N e e e g éf
B D
Qlewrmmcamcn e e r e e e e —————

e - - - - e
- - - - = - - ——

|
1
i
'
|
'
'
1
1
L}
[
3
t
]
1
)
'
1
'
1
'
'
|
'
i
'

1
i X
Fl
ik + s ‘
9, ) g 9 t AXIS OF S
a <
Fig. 1

s = §,+m, t = s;+7; while the area dy;, which is shaded in the figure, and which will
be referred to as the border of gy, is the part of the square bounded by s = s;+ (n+e),
t = s,+ (n+e) exterior to ¢ A little reflection will show that, at points of Q which
do not belong either to ¢y, or to dy,, one or other of the functions 0, (85 81), 05 (5 s)
is zero ; that, at points of ¢y, each of these functions is unity ; and, finally, that in dyy
neither function exceeds unity. It follows then that

0..,(s;8)0.,(t; s)=11in qu,
= 1in dy,

= 0 elsewhere.
§6. The integral

[ [ (5,0) 055 50 0,25 5 ds e
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 421

may be looked upon as !'K(S, t)0.,(s;8)0.,(t; s))(ds dt) taken over Q, or, as it is
usually written,* .

_" k(s;t)0.,(s;8)0.,,(t;s)(ds dt);
Q

and, from what has been said in the preceding paragraph, that portion of the latter
which arises from the part of () exterior to d,; is zero, while that arising from ¢, is
simply

Lm (s, ) (ds d).

We have, therefore,
[ [ es,2) 00055 ) 0,005 50) ds i

= LHK(S, t) (ds dt) + L“K(Sa £)0,.,(s;8)0.,(t; s)(dsdt). . . (2)

Again the total area of d, is 4e(2n+e€), and so, it M is the maximum value of
|k (s, ¢)] in Q, we have '

LHK (5,0) 0., (55 52) 0., (¢ ) (ds dt) l =4e(2n+e) M;
also the remaining integral on the right-hand side of (2) can be replaced by

K (s, t) ds dt,

s1+7 J’sl“‘fl

b St/ Al b

which is evidently equal to ,
'r r Kk (S1+u, s;+v) du do.

R
Thus it follows from (2) that

7

“b ﬁ"“ ) 0un(s5 52) 0, (85 8) dsdi—[" |

Now let us suppose it possible for « (s,, s;) to have a negative value, say —a; then,
because « (s, ¢) is continuous, we can choose a value of % so small that

k(si+u, s;+v)dudv|=4e(2n+e) M. . (3)

Kk ($1+u, $,+0) < —1a,
for all values of u and v whose moduli are not greater than 5. We shall therefore
have
n N
—j j Kk ($1+u, s;+0) du dv > 29°a.
it/ RAaiat/]
Recalling our hypothesis that « (s, ¢) is of positive type, it follows from this and

(8) that
o = 2¢(2n+e) M,

* Cf. HoBsoN, ‘The Theory of Functions of a Real Variable’ (1907), p. 416.
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422 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

for all values of e which are less than a certain positive number (§5). But this is
evidently impossible, because, when e tends to zero, the right-hand side tends to zero,
and we arrive at the contradiction that a fixed positive quantity (viz., n’a) is less
than, or equal to, zero.

We conclude that « (s;, 8,) cannot be negative when s, lies in the open interval
(@, b); and hence, since « (s, s) is continuous in the same interval when regarded as
closed, we have the result that every function « (s, t) which s of positive type in the
square a = s =0, a =t =b satisfies the inequality

K (81, 8) = 0¥ (0 = s, =0D).

§7. This is a first condition which must be satisfied by these functions, and we may
obtain a second on similar lines. Let s, and s, be any two distinct points of the open
interval (@, b), and, as before, let € and % be two positive numbers ; the latter will now
be supposed so small that the intervals [s,—(n+¢), s+ (n+e€)], [S2— (n+e), S5+ (n+¢)]
are both contained within (a, b) and do not overlap. We now propose to consider the
values of the function

[2:0.., (s 81) + @0, , (55 85) | [0, (¢ 1) + a0, , (5 8,)]

at points interior to Q, when x, and x, are any real constants. For this purpose we may
make use of a diagram (fig. 2) which is an obvious extension of the one employed in
the previous paragraph. The square Q is divided in this case not by eight, but by sixteen
lines, viz., those whose equations are s = s, 4+ 7, s =8, t(n+e);t =8+ n, t =5+ (n+e)
(2, B=1,2). By giving « and B all possible values in the equations just written, it
will be seen that we obtain four sets of eight, for each of which we can distinguish a
square q,, bounded by the lines s = s, + 7, ¢ = s + n; moreover, these squares will
evidently have borders d, of width e It is not difficult to see that, in those parts
of Q which are exterior to the borders d,; (a, 8 = 1, 2), we have either

06,1’ (3§ 31) = 05,1, (3§ 32) = 0,

ee:ﬂ(t;sl)zee,n(t;SZ): 0>T :

or

that in the square ¢, we have
Bem (8; Sa) = 96,71 (t; $g) = 1,
05,1, (8; 83—a) = 6:,17 (t; 83—[3) = 0;

* The reader may compare this with the fact that, when we have a quadratic form which only assumes
non-negative values, and we put all the variables save one (say 1) equal to zero, we deduce that the
coefficient of ;2 must be = 0.

+ Both these pairs of equalities will hold in certain parts of the square, but we only require that at
least one of them should be true.
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and that in the border d,s the last pair of equations still hold, but 6., (s; s.), 6., (¢; ss)
are each less than, or equal to, unity. From this it appears that the function
[0, (55 81) + x50, ., (55 82)] [0, (¢5 81) + @ab., (£ 82)] = @25 0 Qs (2, B =1, 2),
= 0 outside the borders d,g,

and that in the border d,, its modulus is = |x,x,].

27 -/7/////

1,,

¢l-.—----.--.._..—.-.-...—--.--------c--—-
s

w w W ‘;‘
e gla ! Fle
& U 1 B
o at Ly o al o
R

S P

=
o=

§8. Let us now write
0(s) = a0, ,(s; 1) + ab., (55 s),
for the sake of brevity. It follows from the remarks of the preceding paragraph that
[[r0o@o@dsd=3 3w (s @s )

ap
2

+3 3 [ k(5000 00) @sdd). . . (1)

a=1 B=1 B

Now the area of each of the borders d,, is 4¢(2n+e¢), and so we have

élﬁlf (s,t)@(s)ﬂ(t)(dsdt)ts4e(2n+e)(]mlj+}w9])”M;

off
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424 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

‘moreover, it is easily proved that, in virtue of the symmetry of « (s, ¢),

S 3o, els ) (deds)
Zap

a=1 =1
can be written as

jﬂ F [k (81+24, $1+0) + 22120k (8, + %, S2+0) + 2k (S5+u, s,+0) [ dudv. . (5)
-7

-

From this and the equation (4) we finally obtain the inequality

[[ o006 0@ dsdt—]" | s ) dudo| = te246) (] + s M,

where F, (u, v) is the integrand of (5). A
The function F,(u, v) is, of course, dependent on the real constants x; and a,; let
us suppose it possible to choose them in such a way that

F2 (0, 0) - a'flzK (81, Sl) -+ 21‘1:{:2’( (81, 82) + 9(322K (82, 82)

takes a negative value, say —a. Owing to the fact that «(s,¢) is continuous, it is
then clear that we can chose % so small that

s (u, v) < —1a,
for [u|=m, |[v|=m. From this we deduce the inequality

n'a = 2e(2n+e) (|| +

;] )" M,

as in the corresponding place in §6; and hence, as this is impossible for sufficiently
small values of e, it follows that, when s, and s, lie in the open interval (o, b), and 2,
and @, are real, I, (0, 0) is not negative. Accordingly, since « (s, ¢) is continuous, it is
easily seen that every function « (s, t) which is of positive type in the square @ =s =0b,
a =t =0b s such that, when x, and x, are any real numbers, '

27Kk (81, 81) + 20,250 (S, S2) + o'k (Sg, 83) = 0 <OL =6= b). .

a=s,=0b

§9. The reader will now be prepared for a general theorem of which those already
considered are particular cases. After having been through the latter in detail it will
be sufficient to sketch the general proof.

- Take any n distinet point s, s,,..., s, in the open interval (a, b), and suppose that €
and 7y are so small that the intervals [s,—(p+e¢), s,+ (n+e)] (@ =1,2,...,n) form a
non-overlapping set contained within (@, ). Now let

0(s) =S wf.., (s; 5.),
a=xl ‘


http://rsta.royalsocietypublishing.org/

1~
)

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

Py
A \

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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where @, 2s,..., %, are any real constants; and consider the values of the function
0(s) 0(¢) in Q. Tt will be seen on consideration that in this general case Q must be
regarded as divided by 8n lines, and that there are n® squares g, each having a
border d, (o, 8 =1,2,...,n). It will also be seen that

0(s) 0(t) = way in Qo (o, B =1,2,...,0),
= 0 outside the borders d,g,

and that in the border o, we have
10(s) 0(2) | =aa].

Proceeding then as in the case n = 2, we obtain the inequality

l r; jz (s, 2) 0(s) 0 (1) ds d’f—r_,, Jm_nFn (u, v) du dv

= 46(27)+€)<§ |2,
a=1

2
.
where

F, (u, v) = @k (s;+u, $1+0) + 2.7 (S3+ 1, S5+ 0) +...+ 2,7k (s, + U, $,+v)
+ 22,25 (S1+ U, S+ V) + ... ;

and hence we establish that I, (0,0) is always=0. FEventually we obtain the
general theorem :—

Lvery function k (s, t) which is of positive type in the square a <=s=b, a =t =10
must be such that, when s,, sy, ..., s, are any points of the closed interval (a, b), we

have
21K (81, 81) 5K (S5, 85) F oo 2,7k (S, 8,) + 200,25k (81, 8) + .. = 0,

Jor all real values of x,, ,, ..., ,.
§10. In accordance with the notation employed by FrEpHOLM, let

(81, Sgy cony 8"> K (815 81) K (81) 82) cee K (813 Sn)
K

K (83, 81) K (S3, S2) «on K (S35 S)

815825 0005 Sy

K (Sm 81) K (Sna 32) eee K (Sm Su

Then, by the theory of quadratic forms, it is known that, in virtue of the inequality
which has just been obtained, we must have*

S1, Sgy ...
et 1 AU
Sy, Sy veny S

n;

* Vide BroMwICH, ‘Quadratic Forms and their Classification by means of Invariant Factors’ (1906),
pp. 19, 20.
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426 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

and this is true independently of the number of points, s,, s, ..., s, and their situation
in the interval (a, b).

Conversely, by an appeal to the theory of integral equations, we may prove that
any continuous symmetric function « (s, ¢) defined in Q, which satisfies this condition,
is of positive type. For it will be remembered that, according to FrepHOLM'S
theory,* the singular values of the equation

(4
F(s) = gb(s)—th(s,t)qS(t) N
are the zeros of the integral function
b 2 rbrb /
D) = I—Aj K (1, 81) dsi+ \ j [ K <8" 82> ds ds, ...

21 S1, Sg

_\\» b b / i \ ;
+( );) j‘ “.J J’ K(Sh 827-.-; sn) d81d82 ...d8n+..-.
n. a

Y
a a S15 825 +ee5 Sp

Applying our hypothesis that (6) holds for all values of s, s, ..., s,, it appears that

. —A\) . . . .
the coefficient of ( 1) in the series on the right cannot be negative; moreover,
7!

Hreerr has proved that every continuous symmetric function has its singular values
all real. It follows, therefore, that, if X, is any one of the zeros of D (), we shall
have

r 2 (bbb ]
A, LJ x (81, 1) dsl+>3l’—7j j J' K<Sl’ S2s 835 ds; ds, dss+ ...

VadJada 817 823 83/

N 0 s, Se e S
r K Lo ? Oankl d81d82...d82n+1+...

+
277/+1 I a ava S15 Sgy eeey Son1

2 b 2n b b b . N \
= 1+Z2\L'j J K<Sl’ 82) ds, dsy+ ...+ A j j j K<°l’ 2 ""%") ds, ds, ... ds,
. ava

S1, S 2nlla ada 815 Sgy «ey Son

+eey

where the series in the square brackets on the left is not negative and that on the
right is positive ; and hence, that N, must be positive. Since we have seen that, for
k (s,t) to be of positive type, it is sufficient that all the singuiar values of (7) should be
positive, we may now state the following theorem :—

In order that a continuous symmetric function « (s, t) defined wn the square
a=s=b, a=t=0 may be of positive type, it is necessary and sufficeent that the

Sfunctions
Sy, Sy 81y Sgy eees S
k(sp) e (508), L e[S ) L ®
S1, 32/ \SD Sg5 +evy Sp

should mnever take negative values when the variables s, s, ..., 8, ... each range over
the closed wnterval (a, b).

* Vide ¢ Acta Mathematica,” XXVII (1903).
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Tt may be remarked that, as a corollary of this theorem, we have the notable fact
that, if any continuous symmetric function is such that the integrals

b 0t 81,8, b 5% /81, 85 v, S
[ sy s, || w3 >dslczsg,...,j | (8 as s, s,
a ava Sl, Sa a ava 31, 82) ey Sn

are none of them negative, then the functions (8) have the same property.

§11. The properties of the determinants (8) may be used to obtain some idea of the
nature of functions of positive type. Let us suppose, in the first place, that there is
a point (a,, ;) belonging to Q at which one of these functions « (s,¢) vanishes. The

8) al

determinant K< > evidently reduces to —[x (s, @) ; hence, because it can never

9 061
be negative,
K (S, Ctl) = K((ll, S) = 0.

In other words, if we draw the square Q and the diagonal s = ¢, the existence of a
point (@, a,) on this diagonal at which « (s, t) vanishes involves the fact that « (s, ¢)
vanishes everywhere on the lines drawn through this point parallel to the axes of s
and ¢ In particular, we deduce from this that a function k (s, t) which is of positive
type, and us not zero everywhere in Q, cannot vanish everywhere on the diagonal s = t.

More generally, let us suppose that there are points @y, ay, ..., a, of the interval
(@, b) such that -

K<“”“2’“"“">=o. T )
Ay, Qgy oouy Oy

By considering the determinant whose elements are the first minors of the four
elements belonging to the first two rows and columns of

S, Gy, Qgy ven, O
K< ,’">,.........(10)
) S: 061’ OL2, ceey an
we obtain the equation®
K<s, M1y Agy oy Uy K<a2a Wzs ees Ay
S, Gy, Qg ..., by gy gy vevy Oy
2
_ K<s, gy vey a.n> K(o&l, Oy oo, an>__ I:K<s, sy .y an>
8’ az, sy an al, a2, esey an al, a2’ seey an

Recalling that the first term on the right vanishes in virtue of our hypothesis, and
that neither of the terms in the product on the left can be negative, it is clear that

we have
K(s, gy vony an> —0
a’l: 062, ey a’n

* Vide Scorr and MATHEWS, ¢ Theory of Determinants’ (1904), p. 62.
312
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428 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

at each point of the interval (¢, b); and it can be proved in a similar way that the
remainder of the functions

QU R b S IR
have the same property.

Again, because the determinant (9) and the functions (11) all vanish, it is easily
seen that the function (10) vanishes identically. Accordingly, if any one of the
functions (8) vanishes for all values of the variables, so must all those which follow it.
It appears, therefore, that, when « (s, t) is of positive type, the determinant of the
integral equation (7) is either an infinite power series in . whose coefficients are
alternately positive and negative numbers, or else it is a polynomial whose coefficients
obey the same law.

Another property which is worth noticing is that, if L is the upper limit of the
function « (s, s) in the interval (o, b), then

—L=«(s,t)=L

in the whole of the square Q. This follows immediately from the fact that, since

8,
K<s: t)EO,

we have
L=« (s,s)x(t,t) =[x (s, )

§12. We have so far confined ourselves to the consideration of functions of positive
type, but the reader will easily perceive that the results obtained for these functions
may be made applicable to those of negative type by a simple device. In fact, if
« (3, t) is of negative type in the square Q, and we suppose that

K (s, 1) = —k (s, 1),

it is evident that «’ (s, ¢) is of positive type in Q.  Applying then what we have said
about functions of positive type to «’ (s, £), we may deduce the analogous properties of
k (s, t); for instance, the necessary and sufficient condition that a continuous symmetric
function « (s, t) defined in the square a =s=0b, a =t=0b may be of negative type s

that the functions
Coe . ,
Sy, 82 n Sy, Sgy eney Sy
— Kk (83, 1), K e (1) K
( 1 1)) <817 82)’ ) ( ‘ ) 81, Say vees S, s )
should never be negative when the variables s, S, ..., 8, ... each range over the closed

wnterval (o, D).
We may remark that this result and that of § 10 prove the classes of funections of
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positive and negative types to be mutually exclusive, save for the trivial case when
k (s, t) vanishes everywhere. For, if « (s, ) belongs to both classes, we must have

k(s, $)=0, —k(s, 8)=0

for all points of the interval (a, b); and hence « (s, s;) must be zero everywhere in
this interval. Tt follows, then, from a remark made in § 11, that « (s, t) is zero in the
whole square Q.

Part III.—CerraN Funcrions or Positive Type.

§13. In the present section we propose to investigate certain species of functions
which are of positive type. The remark made at the end of the previous section
(§12) will make it plain that there is no loss in thus limiting ourselves, since the
corresponding results for functions of negative type may be at once deduced by the
device there explained. ‘* '

Let us again consider the square Q of the (s, ¢) plane which is bounded by the lines
s=a,s=>b,t=a,t=>; and let us suppose that it is divided into two triangles by
the diagonal whose equation is s = ¢. The most direct method of defining a continuous
symmetric function in Q is, evidently, to define a continuous function in one of the
triangles, say that in which s =¢; and then to suppose this continued into the
remaining portion of the square by defining its value at a point for which s > ¢ to be
that at its image by reflection in the diagonal. For example, if 6 (s) is a continuous
“function of s in the interval (a, b), and we define « (s, ¢) to be equal to 6 (s) in the
triangle s =t, then the continuation of this function into the triangle s> ¢ is
evidently 0 (¢). :

The theorem of §10 may be applied to the function we have just defined, and hence
the condition that it should be. of positive type deduced. Instead of doing this,
however, we shall consider the more general function®

k(s,t) =0(s)p(t) (s=t)
=¢(s)0(t) (s=1),

where 6 (s) and ¢ (s) are both continuous in the interval (o, b). It will be remembered
that functions of this kind occur as GREEN’S functions of certain linear differential
equations of the second order, and that it is therefore of some interest to know when
they are of positive type. Accordingly we shall seek necessary and sufficient
conditions which will ensure that this is so.

§14. In the first place, let us suppose that 6(s) and ¢ (s) are any continuous
functions whatever; and let 3 be the set of points belonging to (a, b) at which
neither of them vanish. This set will evidently be dense in itself in virtue of the

* (f. BATEMAN, ¢ Messenger of Mathematics,” New Series, 1907, p. 93.
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continuity of the functions; but it cannot be closed, unless it contains every point of
the interval. Moreover, it can be proved that « and B, its lower and upper limits
respectively, do not belong to the set, unless they coincide with the end points of the
interval.

At each point of the set = the quotient

0 (s)/$ (s)
will have a definite value, because ¢ (s) is never zero. We may therefore define a
single-valued function f(s), whose domain is 3, and whose value at any point is that
of this quotient. It will appear in the sequel that the properties of « (s, ¢) depend
very largely on the nature of f(s), and accordingly, in anticipation of this, we shall
speak of it as the discriminator of « (s, t). 'The discriminator will evidently be
continuous in its domain, but it will never have the value zero.

§15. Let us now suppose that « (s, ¢) is of positive type, and is not zero everywhere
in the square Q. We have proved (§ 11) that, under these circumstances, the function
x (s1, 1), which in the present case is simply 6 (s;) ¢ (s,), cannot be zero in the whole
of (m, b); also, at points where it does not vanish, we know that « (s, s;) is positive
(8§86, 10). It follows that, for a function of positive type, the set 3 certainly exists,
and that in it the discriminator only takes positive values.

Again, when s, and s, are any two points of %, and s, > s,, we have

(558 = [ () b () () [ ()= )]
hence, since f'(s,) is a positive number, it follows by the theorem of § 10 that

ECYEACY

This result may be combined with the previous one in the statement that the
discriminator of « (s, ¢) is a non-decreasing function whose values are all positive.

We have next to consider the points of (a, b) at which one or both of the functions
0 (s), ¢ (s) vanish. These fall naturally into three sets, according as they belong to
(1) the closed interval (@, @), (2) the closed interval (8, D), or (3) the open interval
(2, B). As regards (1), it 1is not -difficult to show that 0 (s) vanishes in the whole
interval. For, if «, is any point of (u, «), one at least of the numbers 0 (a,), ¢ (c1)
must be zero; and hence, since « (a;, 0,) 1s zero, the function « (s, a,) is zero at each
point of (a, 0) (§11).

Now when s > @, we have

K (8, 1) = 0 () b (s),

and, at points of 3, ¢ (s) does not vanish ; we must therefore have 0 (a;) = 0. It can

be proved in a similar manner that ¢ (s) vanishes everywhere in the interval (8, b).
Finally, we can show that, at points of the open interval (a, 8) which do not belong

to 3, both 6(s) and ¢ (s) vanish. In fact, if @, is any one of these points, there are
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clearly points of 3 both on its right and on its left. The argument we have just
employed will then establish that, by reason of the former, 6 (a;) is zero, and that,
by reason of the latter, ¢ («,) is zero.

§16. Conversely, let us suppose that « (s, ¢) is defined in terms of continuous
functions 6 (s), ¢ (s) which have the properties mentioned in the preceding paragraph ;
aud let us consider the function

S1, S2y evey Su
K<SL o s,.>’ 19
where s} $,, ..., s, are variables each confined to the interval (¢, b). We may remark
that, as this function is symmetric, it will take all possible values in the domain
=s5=8=...=s, Thus, since we are only concerned with the sign of the function,
‘we may always suppose the variables to satisfy these inequalities. Firstly, let us
suppose that one of the variables has a value not belonging to the domain of the

discriminator of « (s, t). If such a value belongs to (a, &), the point s, must evidently
lie in this interval ; hence, since

k(s,8)=0(s)d(s,)(r=1,2,...,n),

and 6 (s,) vanishes by our hypothesis, it is evident that all the elements of the first
row of (12) are zero. In a similar manner it may be proved that, when one of the
variables has a value belonging to the interval (b, 8), all the elements of the last row
vanish. Again, if one of the variables, say s,, has a value belonging to the open
interval («, B), but not to =, we shall have

0(sw) = p(5) = 0

by our hypothesis. It is thus easily seen that the elements of the m™ row of (12) all
~vanish. Summing up our results so far, we conclude that the function (12) can only
take values different from zero when the variables s, s, ..., s, are each confined to
the set 3.

§17. Let us next consider’ the case when the variables are restricted in this manner.
The function (12), when expressed in terms of the functions 6 and ¢, is

0(s1) b (1), O(s1) b(s2)y o O(s2) B (s)
0(s1) b (52), O(s2) b (s2)s vos O(s2) D (s)
O(s1) ¢ (s5), 0(s2) b (sa) s O(s5) b(s)

(1) b (sa)s O(52) B (52)s vis O(sa) b(s)
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hence, by dividing through both the »™ row and the »" column of this determinant
by ¢ (s,) (r =1, 2, ..., n), its value is seen to be

[b(s1) () oo ()| S(s1), S(s1), -os S (5)
S(s1)s f(82)s oo S(52)
S(51)s F(83)y wees S(85)

S (1) F(2)y ooy S (s0)

The determinant just written can be evaluated without difficulty, and thus we find
that (12) is

[ (1) b (s2) - ()T 7(51) [ ()= ()] [f (s2) =/ ()] oo [ ()= (50m)

Now, according to our hypothesis, f(s,) is positive and each of the factors
[/ (s.)—f(sa-1)] is positive or zero. It follows, then, that (12) cannot take negative
values when the variables are each restricted to the set 3. Taking this in conjunction
with what was said in the previous paragraph, we see that the functions
Sb 82 81) S, RS} Sn)
K (81, 81), K<Sl’ 82>, e K<81, Y I
_can never take negative values, when the variables s, s,, ..., ,, ... each range over
the interval (a, b), and hence, by the theorem of § 10, that « (s, ) is of posutwe type.
We may, therefore, state our results in the following theorem :—

If 0(s) and ¢ (s) are each continuous functions defined in the mtemal (o, b), the
necessary and sufficient conditions that the function

k(st)=0() (1) (s=¢)
=¢(s)0() (s=¢),

should be of positive type are (1) that the discriminator of the function should be
positive and non-decreasing in its domain 2, and (2) that, if o and B are the lower
and upper limits of 2, 0(s) should be zero in the interval (a, ), ¢ (s) zero i the
interval (B, b), and both 0 (s) and ¢ (s) zero at points of the open interval (e, B) which
do not belong to 3.

As a corollary of this, by supposing that ¢ (s) = 1 (e =s=D), the reader may
deduce the corresponding conditions for the function defined in § 13.

§18. Let us now investigate under what circumstances a function « (s, ¢), which
satisfies the conditions stated in the enunciation of the theorem of §17, is definite.
If the domain of its discriminator is not dense everywhere, it will be possible to find
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an interval (¢, d), lying within (a, 0), such that at each of its points the function
0 (s1) ¢ (s1) 1s zero. We shall, therefore, have (§11)
k(s,t) =0 (c=s=d, a=t=Db)
=0 (¢c=t=d, a=s=0D);
in particular, «(s,?) will vanish everywhere in the square ¢ =s=d, ¢=t=d.
Now, if x (s) is any continuous function of s defined in the interval (a, b), which is

zero in the intervals ¢« =s=¢, d =s =0, but does not vanish everywhere in (¢, d),
we shall have

b b d (d
| T e ax@x@dsde=[ [ x(s,0)x () x @ dsde
=0,
by the properties of x (s) and « (s, ¢). It follows from this that, if «(s,¢) is definite,
the domain of its discriminator must be dense everywhere in («, b).
Again, let us suppose that the discriminator of «(s, t) has a constant value p
throughout a certain interval (c, d). It will then be seen that within the square

c=s=d,c=t=d
w(s,t) = pp(s)b();

and hence, if x (s) is defined as before, that
b b d ) 2
[ xwox@x@dsa=p|[ $exas].

It may be proved without difficulty that there exists a function y (s) which is not
everywhere zero, and is such that '

C({)(.@)X(s)ds:O. (1)

For, let x, (s) and x,(s) be any two functions which are not mere multiples of one
another, and which satisfy the conditions imposed on y (s). Then, if either of the
integrals

[0 ds [ ¢

is zero, we shall have an obvious solution of (13). Ou the other hand, if their
respective values w,, u, be different from zero, it is easily seen that

s ~x(8) _xe(s)
X (s) " o

satisfies (13); and, in virtue of our hypothesis, x (s) is not zero everywhere in (a, b).
We conclude, therefore, that we can always find a function y (s) which is such that

b
[ (s 0x ) x @ dsde = o.
VOL. CCIX,—A, 3 K
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It thus appears that the discriminator of a definite function of positive type cannot
be constant throughout any interval. |

§19. Conversely, we may show that every function of positive type, whose
discriminator (1) has a domain which is dense everywhere in (a, b), and (2) has not a
constant value in the whole of any interval, is definite. For, if this were not so, we
would be able to find a continuous function ¥ (s) other than zero, such that

4
e np@ydi=0 (a=s=b)
Supplying in the value of (s, t), this equation may be written

¢(s)£9(t)x/;(t)dt+0(s)ﬁq$(t)x[;(t)dt:O (@=s=b). . . . (14)

Now, as s (s) is continuous, and is not zero everywhere, we can find an interval
(¢, d) of (@, D) within which it does not vanish ; also, as the domain of the discrimi-
nator is dense everywhere, it will be possible to find a point, and, therefore, a whole
interval (y, 8), belonging both to (¢, d) and the domain. The interval (y, 8) will thus
be such that in it the functions v (s), 6(s), ¢ (s) do not vanish. It follows that in
this interval the function of s

Kd)(t)\p(t)dt C L. (15)

has a derivative which does not vanish; and hence, by a well-known theorem of the
differential calculus, that this function cannot be zero more than once in (y, 8). It is,
therefore, evident that by contracting (y, 8) sufficiently we can ensure for it the
additional property that (15) vanishes at no point belonging to it.

Returning now to the equation (14), and supposing that s is confined to the
interval (y, 8), we see that

76 ==[o@v@ydef] s

Hence, since both the numerator and the denominator on the right are
differentiable, and the latter does not vanish in (y, 8), the function f(s) is
differentiable in this interval. In fact, by applying the ordinary rules, we obtain

S (s)=0 (y=s=)9).

But this is impossible, because by our hypothesis f(s) cannot be constant in any
interval. We conclude, therefore, that « (s, ¢) is a definite function.

§20. It may be remarked that the conditions (1) and (2) of the preceding
paragraph may be stated in another and more convenient form. For, if a discrimi-

* Vide § 3.
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nator satisfying these conditions had the same value at two distinct points, it would
necessarily have that value at all points of its domain which lie between them (§ 15).
Thus, since the condition (1) and the continuity of (s), ¢ (s) assure us of an interval
of the domain which lies between these points, the condition (2) would be violated.
Hence a discriminator of this kind must be a steadily increasing function; and,
conversely, a steadily increasing discriminator satisfies (2). We may, therefore,
combine the results of the two preceding paragraphs in the theorem :—

The mnecessary and sufficient condation, that o jfunction (s, t), satisfying the
requirements of the theorem of § 17, should be definite, is that s discriminator
should be o steadily increasing function whose domain vs dense everywhere tn (a, b).

As an application of this theorem we may consider the function®

k(s,t) = (s—a)(b—1t) (s=t),
= (t—a)(b—s) (s=1).

The discriminator has the open interval («, b) for its domain, and its value at any

(s—a)/(b=s3),

which steadily increases with s. It follows from §17 and the theorem just stated
that « (s, ¢) is a definite function of positive type. '

point is

§ 21. Leaving the particular class of functions with which we have been dealing,
let us now suppose that « (s, ¢) is any function of . positive type defined in the square
a=s=b,a=t=b. Leta, a, ..., @, be any m points of the interval (@, b) which
are such that ’

A1y Ogy vouy A,
K< 1s 2> ) m> # O.
al) (1/2, coey Oy,

Then the function
h (8, t) = K 8y Oy, Uy vuy am> K<C¥/I; gy voey Uy,
t) Ay Agy ooy Uy \CC], Wy ooy Uy,
will evidently be symmetric and continuous in the square ¢« =s =0, a <t =b.
Again, when the function
<Sla Sos ceny Spy Oy, gy LR am>

Sl; 323 ey sm U1y Ay LR A,

is expressed as a determinant, it is easy to see that the minor obtained by suppressing
all but the ¢ of the first # rows and all but the j* of the first # columns is

<Si: Oy, Qgy oo,y a’m) .
Sj> Ay Aoy vovy Oy

* This is the generalised form of HILBERT’S classical function, vide ¢ Gott. Nachr.,” p. 227 (1904).
3 K 2
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The determinant of n rows and columns, whose elements are these minors, will
therefore be
{ /ab Ay, "')a’m> n] S1, S, '°')Sn>
K| (P .
\,a’la Agy ovvy Ay, S1y Sz eevy Sp
But, by the theory of determinants, we also know that it is equal to*

-1 y
|::< (al, Gy ee oam>:]" K(S" oy vevy Spy (hry oees am>‘
aZ) a2, ey a’m, \319 32) ey Sn) al) (AR} am
Thus, equating these two values, we find
) q )
h/sla Sgy eey 8n> — K<81) Sgy evey Spy U1y ony am)/K <a1; @y oeey am> (16)
\S1, Sz, ovey Sy 81y Sy veey Sy U1y wuny Oy iy Uy oevy

Now, in virtue of our hypothesis that « (s, t) is of positive type, it follows from § 10

that the quotient on the right-hand side of this equation has a denominator which is
positive and a numerator which is not negative. Hence we have

]L (Sb 32) teey 8n> = O,
\Sla 'S2a ceey Sp

and thus, as this is true for all values of #, the theorem of §10 shows that A (s,t) s
of positive type.

§ 22. In the light of this result, it appears that each function of positive type can
be used to generate an infinite series of such functions. We might, therefore, expect
to obtain other species of functions of positive type by taking (s, t) to be of the kind
considered in §§ 14-20.

For simplicity, let us consider the function

hs,t) =« <‘:’ Zl>/K (0, 1), -

1
where

i (ay, ay) = 0 (a,) ¢ () # 0.

Confining our attention to the triangle s =¢, it will be seen that the variables
s and ¢ can be related to the constant a, by either of the inequalities :—

(1) s =t =a,
i) s ==t
(i) o, =s =t

The reader may find it convenient to refer to the accompanying diagram, in which

* Vide Scort and MATHEWS, op. cil., pp. 67, 68.
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the square @« =s =05, a =t =05 is drawn, and the portion of the triangle s =¢ which
corresponds to each set of inequalities is marked with its number.

(a.5) ()
(m)

()

M /e

(a,9) (b.a)
Fig. 3.
By expressing / (s, t) in terms of the functions 6 and ¢, it is easily seen that at each
point of the region (i)

h(s,t) = ¢ (@) 0(s) [q-;ﬂ((;)) _%}

that in (ii) % (s, t) is everywhere zero, and that in (iii)

= 6 (s) fé_(:)_]
bt = 0(w) () [ f ik 28],
In a similar way, or by a mere interchange of the variables s and ¢, the values of
h (s, t) in the corresponding divisions of the triangle s > ¢ can be obtained.
Now, let 6, (s), ¢:(s) be continuous functions defined by

0, (s) = ¢ () 0 (s) (¢ =s =0);

s=¢(8)_9(s) a =8 =m
B = G ") ¢ )

also let 0, (s), ¢, (s) be two others defined by
0,(s) =0 (¢ =5 = a),

06 40 =y =1,
=0 ) ==
B =0@)dl) (@ =s=0);

and, finally, let two functions %, (s, t) (» = 1, 2) be defined in the square @ =s =W,

a=t=bb
= b5 = 0,6) 4,0 (s=0)
=¢,(5)0,(t) (s=¢).

IA


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

438 " MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,
On comparing these latter functions with £ (s, ¢), it will be seen that we have

hy(s,t) =h(s,t) a=s=a, a=<t=a,

= 0 elsewhere ;
and .
hy(s,t) =h(s,t) a,=s=b, o, =t =},

= 0 elsewhere.
It follows from this that we have
h(s,t) = hy (s, t)+hy (s, t)

at each point of the square in which these functions are defined. But it is easily seen
that, as « (s, t) is of positive type, the functions h, (s, f) satisty the requirements of
the theorem enunciated in §17. Thus 4 (s, ¢) is merely the sum of two functions of
the same nature as « (s, ¢), and hence, as it is obvious ¢ priore that the sum of any
number of functions of positive type is a function of positive type, it appears that we
do not in this way obtain any new species of these functions.

The reader may convince himself in a similar manner that the same conclusion
holds in regard to the more general function considered in the preceding paragraph.

§ 23. Although the result of §21 proves to be so barren in this respect, it may be
applied to obtain an interesting property of the symmetrical minors of the deter-
minant of the integral equation

FO =@ k@ d . @)

when « (s, t) is of positive type. Adopting the notation and hypothesis of the
paragraph referred to, let A(A) be the determinant of the above integral equation
when A (s, t) replaces « (s, t). Then, since
b ' 2 (b (b
A0 =10 sy ds+ 2 | h<31’32> sy ds; — ..

2 ‘ a 817 82

n b b b /
+ (N 5 j j h(sl’sz’""i")olslclsz...dsn-i-...,

n a a S15 Say evey Sy

it is easily seen from (16) that
. Gy Oy eney Oy "1y Qgy veey Gl
A(N) = D<)\ > Qyy gy ooy am>/K (al, Ugy veey oam>’ N 0 1))
where

b y
D <)\ Oy, gy eney am> _ K<001, gy oeey a,m>__)\[ K(Sl’ (g Ugy oons am>d31+...

’ A1, Aoy ooy Uy, Uy Mgy vevy Doy a  \S1, Upy Ogy oeey Uy

and is, therefore, a symmetrical m'™ minor of D (A), the determinant of (7), in accord-
ance with FrepmorM’s definition. But, as we have shown that 4 (s, t) is of positive
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type, the function A (\) has its zeros all real and positive. 1t follows, therefore, from
(17) that all the zeros of the minor ‘

D <K' a1, Oy, "':am>

Ayy gy «ney Wy,
are real and positive. Since the minor must be identically zero if
K<a’1) Agy +ees am) = 0
gy Ggy oevy Oy
(¢f. §11), we have thus proved the theorem :—
The zeros of all symmetrical minors of the determinant of an wntegral equation of
the second kind, whose characteristic function s of positive type, are all real and

~ positive.
In particular, as K, (s, t), the solving function of (7), is defined by

Ki(s,t) =D (N5 s,2)/[D(N),

b 2 bb /
D(\; s, 1) —-K(S t)— J (; ;‘>d31+ —;—L’f j K<i’§l’§2>dsld82+ e
1 Yada s 91y 92

it appears that, when s = ¢, the solving function only vanishes for positive values of A.

where

Part IV.—TaE ExransioNn oF Funcrions oF Positive AND NEecATIVE TYPE.

§24. It is to be remarked that HiLerT and ScHMIDT have been able to give very
little information about the expansion of a given symmetric characteristic function in
a series of products of normal functions. HiLBerT has indeed shown incidentally
that, if the number of singular values is finite,

(s, 1) = %"’”(3\%() R £ 1))

L

and Scamiprt in his dissertation has established that this equation remains valid
when the series on the right is uniformly convergent. The latter theorem is, of
course, much wider than the former as regards its generality ; but it has the defect
that the uniform convergence, which it postulates, is not connected with any other of
the properties of « (s, ¢). In the present section we shall attempt to remedy this in
some measure by proving that the equality (18) certainly holds when « (s, t) is of
positive or negative type.

* ¢Gott. Nachr.,” 1904, p. 73. ‘
1 Printed with additions in ‘Math. Ann.” Band LXIII. The theorem referred to will be found on
pp. 449, 450. From a remark made on p. 453 I gather that it is originally due to HILBERT.
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440 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

§25. In the paper referred to above, Scmmipr® has proved that, if « (s, ¢) is any
continuous symmetric function, the solution of

F6) = ) =A] x50 p ) e
is given by

39 =7 +3 N o) ) do

provided that X\ is not one of the singular values Aj, Ay, ..., \,, ... ;T moreover, the
convergence of the series on the right is both absolute and uniform. Now, when we

take
S(s) =k (s, 1),
it is known that, in virtue of one of the characteristic relations,

b (s) = Ki(s, 0).
It follows, therefore, from the above expansion and the homogeneous equations
b
@) =N (@) k(e (n=1,2,..),
that

KA(.,s-,t)=K(s,t)+n§f¢iﬁ(%%ﬁx()f).. )

It should be remarked that ScHMIDT'S theorem only allows us to assume that the
series on the right of (19) is uniformly convergent with respect to s (o =s=1b), for
each assigned value of ¢; and hence, by symmetry, that it is uniformly convergent
with respect to ¢ (a =t =10), for each assigned value of s. When « (s, t) is of positive
type, we may establish the uniform convergence of the series in the whole of the square
a=s=b, a=t=D,as follows. If we write { = s in (19), it is clear that the terms
of the series on the right become functions of s, which, with the possible exception of a
finite number, are all of the same sign as X ; accordingly, by DINT's theorem,] this series
is uniformly convergent in the interval @ =s=10. But, in virtue of the inequality

2[4 (5) ¥ (1) [= 4 (5) + 9 1),

the terms of the series on the right of (19) are never greater in absolute value than
those of

M () + 2 (0]

n=1 }\n ()\”—)\)

[

* Pp. 453, 454.

T We shall always suppose this to be the case in what follows.

} Dini, “Fondamenti per la teoria delle funzioni di variabili reali” (Pisa, 1878), §99. See also YOUNGg,
“On Monotone Sequences of Continuous Functions,” ¢ Proc. Camb. Phil. Soc.,” vol. XIV., pp. 520-3.
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Hence, as the latter converges uniformly for a =s=0b, a =¢ =0 by what has just
been said, the result follows.

§26. Let us denote the sum of the first m terms of the series on the right of (19)
by S, (\; s, t), and the remainder after these terms by R,,(\; s,t). We have

mam0=§%@%@_§%@%m;

n=1 n n=1 n

and hence, keeping m fixed,

LS, (\; s, t)—_zlpL(i)_SbL(Q

A>» }\n
Lt S, (\;s,t)=— ‘Pn(g)‘l‘n()

Thus, since (19) can be written
Ko (5, 2) = R (05 5,2) = & (5, 1) + S (0 5, 1)
we obtain the equations

L [K, (5 0= R (5 5,0] =Tt [Ry(s, )=Ru s ,0)] = x (5,0~ £ 110 (99

This relation holds for any continuous function « (s, ¢), but we now add the further
limitation that the function shall be of positive type. Then, since

' A (s)F
R, (\;s,5) = - m“y\[(xﬂ Q)Q)

we shall have

R.,(\;s,89)<0,. . . . . . . . . . (2]

for each negative value of \.

Let us, in the next place, investigate the values of K, (s, s) for negative values of \,
it being supposed, as above, that « (s, ¢) is of positive type. If 0 (s) is any continuous
function defined in the interval (a, b), it follows from (19) and the theorem proved at
the end of the preceding paragraph that

Hb Ky(5,0)0(5) 0 () dsde = | f k(s,) 0(s) 0(t)dsdt + 3 mi\—:_T)UZ%(S)H(s) ds]g.

n=1

Recalling HiLBerT's theorem, it will be seen without difficulty that this reduces to

[[[Ki 00600 dsar=3 1 Ublp (5) 0 (s) ols]%.

n=1

VOL. CCIX.—A. 3 L
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442 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

Now, when X is negative, the terms of the series on the right must be either zero
or positive.  'We conclude, therefore, that for all functions of the class ®

b b
([ Ris 060 dsds=0  (x <)
In other words, K, (s, ¢) is of positive type tor these values of \. Applying, then,

the theorem proved above (§§ 6, 10), we see that

Ki(s,9)=0 (a=s=b), (A<0). . SR (22)

§27. Returning to the formula (20) and writing s = #, we obtain

Lt [KA (83 3) ;3'7;;()\; S, S‘)] = K(S < [dj (9)]

A — n::l )\n

Accordingly, from (21) and (22), it follows that

(ee)>§["’"()].. e (23)

n=

This is true, of course, for all values of m which are sufficiently great ; and, further,
when we increase m we only add positive terms to the right-hand side. By a well-
known theorem of the elementary theory of series, we thus see that

[ (5)
2N

converges for each value of s in the interval (a, b); and hence, since
2[ 9 (8) ¥ (0 | = [ () + [ () I,
RACTA]

n=1

that the series

converges absolutely for each pair of values of the variables satisfying the inequalities
a=s=b, a=t=0>. From this last result it follows that the function

,f‘(s,t).-:'x(g,t)—ni‘ka@[‘/ﬁu@ (29

has a definite finite value when the variables are restricted in the manner just
mentioned. In the paragraphs which follow we shail consider the properties of
/(s, t), and eventually prove that it is everywhere zero. It may be remarked that
the inequality (23) proves the relation

0=/f(s,s) =k (s, s)
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§28. If eis any arbitrarily assigned positive quantity, it follows from the absolute
convergence of the series on the right of (24) that we can choose m great enough to
ensure the inequality

o ROl )

And, when this is done, it is easily seen that, since

e ()9 (0] o D ()9 (O] (0> m)
A, N(a—=N)  (A<0)’

we have

IR, (N5 5, 8)] <% (A < 0).

Again, from (20), we see that a negative number L/ can be chosen with so great an
absolute value that, when A < L/,

K,(s,t) =R, (\s s, 8)— | x(s, 8) — s P (5) ¥ (1) <&,
; ™ 3

while, from (24) and (25), we deduce

[K(S, t) — s M%l@] ACH t)l <;§.

=1
Adding the three inequalities just written, we obtain
Ky (5 ) =f (s )] <e (h< L)
In othér words, we have proved the theorem
A}t Ki(s,8) =f(s,t) (a=s=0b,a=t=D).

29. It may be proved® that, if ¢ is any constant and @, any point of the interval
y bep Y yp
(@, b), then the solving function corresponding to the characteristic function

) . X K (al,' s) K (0&1, t)
h(s, t)——K(é, t)— .
18
I()\ (ala S) I(/\ (ala t)

H, (S> t) = K, (s, t) N c+ K, (ala 0(1) —K (al’ Ch) .

(26)
whilst the corresponding determinant is easily seen to be

AN =D [1 LK (ot 1) =k (s, al)].

C

* (f. BATEMAN, ‘Messenger of Mathematics’ (1908), p. 184. The result in question follows from

equations (24), (20), and (26), by . writing f(s) = 5—9%1—’——3), g(t) = x(as, t) and observing that

$6) = 229 5 () = Ky, 1), dryy = Ballm ) ol ),

[

3 L 2
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Now, if we write s = ¢ = a, in (19) and (24), it is easy to see that

K)\ (0&1, al) zf(ab al) +7§1 Eil,f;%g:

and hence that K, (@, ;) constantly increases with A, so long as the latter is negative.
Consequently, when e is any positive quantity, and we take ¢ to be

K (0, ) — f(an, ay) +e,
it follows from the theorem of the preceding paragraph that
K, (tr, a0) = (0, 1) +¢

can only vanish for positive values of \. Thus, as D (\) has no negative roots, 4 (s, t)
is of positive type,* and, therefore, in virtue of the remark at the end of § 27,

Lt Hy(s,8)=0 (a=s=D).

As-— oo

Using the formula (26), it will be seen that this becomes

f(s, 8)— Lf__(a: )= (a=s=0).

But, as ¢ may be taken as small as we please, this is evidently impossible unless
J (o, 5) vanishes. It follows that, as @, and s may each have any assigned values
belonging to («, b), we must have

f(5,0)=0 (e=s=b,a=t=D)
We have thus shown that, in the case of a function of positive type, the series

EI‘ELM..........(W)

n n

has « (s, ¢) for its sum-function. It was shown in §27 that the convergence of this
series is absolute, and, by an application of DINT's theorem, it may be shown that the
convergence is also uniform in the square a=s= b, at=0. Hence, 1f (s),

W (5), vvy $u(8), ... are a complete system of normal functions relating to a function
K (s,t) of positive type and Ay, Ng, ..., Ny, ... are the corresponding singulor values,
then the serves

n=1 n

converges both absolutely and uniformly, and its sum-function 1s (s, t).

* Qwing to the fact that A () has only positive roots.
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§ 30. From this theorem several interesting results may be deduced. For example,
replacing « (s, t) by the series (27) in (19), we obtain

K.(s,t) = =

n=1

M}%Q,,.......(%)

where the series on the right is uniformly convergent. Again, it we write s = ¢ in
(28), and integrate with respect to s between the limits o and b, we obtain

b
1
K(s,8)ds == —~~. . . . . . . . . (2
[a }\(6 5) s n§1 )\n"‘)\ ( 9)

Provided that \ is not positive, the terms of the series on the right are all positive
and less than those of the series

€L
n=1 )\n ’
which, by writing A = 0 in (29), is seen to converge. It thus follows that, for A < 0,
the former series is uniformly convergent. Integrating (29) between the limits 0 and X,
where the latter is negative, and recollecting FrEDHOLM'S formula
d b
— % [log D (3)] = [ K, (s, s) ds,
it is easily seen that
/
D) =1 (1~ £> (= 0),
n=1 An
since D (0) = 1. It now follows that, as the right-hand member of this equation is
an integral function of A, we may drop the restriction A=< 0. We have thus expressed
D (N) as an infinite product. 2
Finally, we may remark that if |\ | is less than the least of the numbers \;, \,,...; \,,,..
the right-hand side of (29) may be expressed as a power series in which the coefficient
of \™ 1s
1

n=1 )\nmﬂ

Also, by employing NEUMANN'S expansion for K, (s, t), it is easily seen that the
coeflicient of A™ on the left is

b
J Kn+1 (87 8) dS,
a

where in the usual notation

b b b .
Kms1 (8, 8) = I [ [ K (8, 51) K (51, 8) evn K (S, £) dsy dsy... ds,,  (m=1),
and
Ky (s, t) = K(s, t).
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It follows that
f K (S, s)ds— p> X—‘ (m=1,2,..)
n=1 A,
~ §31. In conclusion, it may be pointed out that the theorem ot §29 holds also when
K (s,t) is of negative type. This may be deduced from the theorem mentioned by
employing the usual device, or it may be proved directly by commencing with the
equation

T [Ry (5, 9) = R (055, 5)] = w (5,9) — 3 W‘n (8)32
o
instead of that at the beginning of §27, and proceeding by a method similar to that
which we have used above.

It may also be of interest to remalk that by a very slight modification of these
proofs we may show that (27) represents « (s, t) when the latter has only a finite
number of singular values of one sign, but an unrestricted number of the other.
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